Adaptive Regulator Using Neural Network

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding Mode with Neural Network Regulator for DFIG Using Two-Level NPWM Strategy

This article presents a sliding mode control (SMC) with artificial neural network (ANN) regulator for the doubly fed induction generator (DFIG) using two-level neural pulse width modulation (NPWM) technique. The proposed control scheme of the DFIG-based wind turbine system (WTS) combines the advantages of SMC control and ANN regulator. The reaching conditions, robustness and stability of the sy...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Cancer Detection Using adaptive Neural Network

We present a system which detects the cancer stage using clustering techniques. The task is accomplished using Adaptive Resonance Neural Network (ARNN), a special case of unsupervised learning. A vigilance parameter (vp) in ARNN defines the stopping criterion and hence helps in manipulating the accuracy of the trained network. To demonstrate the usefulness of ARNN, we used Wisconsin breast canc...

متن کامل

Adaptive friction compensation using neural network approximations

We present a new compensation technique for a friction model, which captures problematic friction effects such as Stribeck effects, hysteresis, stick-slip limit cycling, pre-sliding displacement and rising static friction. The proposed control utilizes a PD control structure and an adaptive estimate of the friction force. Specifically, a radial basis function (RBF) is used to compensate the eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEJ Transactions on Industry Applications

سال: 1999

ISSN: 0913-6339,1348-8163

DOI: 10.1541/ieejias.119.809